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Conformal invariance in two-dimensional cluster-cluster aggregation

J. C. Earnshaw* and M. B. J. Harrison†
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The Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland

~Received 19 May 1998!

It is conjectured that reaction-limited cluster-cluster aggregation~RLCA! in two dimensions~2D! displays
conformal invariance. In support of this hypothesis, it is found that structure functions computed for on-lattice
aggregation are asymptotically invariant under conformal transformation ast→`. Further, the fractal dimen-
sion determined for 2D RLCA is in good accord with predictions based on conformal invariance.
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I. INTRODUCTION

Cluster-cluster aggregation is a model system for gro
by random colloidal aggregation. Two distinct limits ha
been recognized@1#: diffusion limited ~DLCA! in which par-
ticles bond irreversibly on contact with unit probability an
reaction limited~RLCA! in which the probability of particle-
particle bonding is significantly less than unity. In the form
case the clusters self-organize into an ordered state du
local depletion of material from their neighborhoods, lead
to an effective long-ranged repulsion@2,3#. The final gelling
state emerges as the growing clusters merge into a sp
filling ~or perhaps percolating@4#! network@3#. However, the
second case of RLCA is less well understood; we have
date no conceptual framework which seems appropriate.
system evolves, at least in two dimensions~2D!, to a state
which lacks any characteristic length scale: it has been s
gested that it may self-organize into a critical state in
limit t→` @5#. We advance here the conjecture that this st
possesses the symmetries of the critical state, in partic
that it exhibits conformal invariance. This property of critic
systems implies that at criticality the spatial correlation fun
tions describing the system are asymptotically invariant
der conformal transformation@6#. We restrict ourselves to
the 2D case, where the conformal group is an infini
parameter group, giving the symmetry considerably gre
scope@6#.

In the present context thet→` limit cannot be interpreted
too strictly: any fractal growth must eventually incorpora
all the matter present within a single cluster. For an infin
system this will span the system, due to the decreasing
sity of growing fractal objects. This will also be true of finit
systems with a sufficient~system size dependent! particle
density to form a spanning cluster. In such a state the sys
cannot show structures on all length scales as envisage
the analogy with criticality. We thus consider the trends at
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evolves towards the limit. In particular we will conside
these trends for the scattering functionS(q,t).

There is some conflict in the literature over the form
S(q,t) in RLCA@2,7#. In 2D experiments@5#, as in the simu-
lations to be described here, the form tends to a power-
extending to the smallestq values accessible: the system
the final stages of aggregation lacks any characteristic s
of length. Now, conformal invariance follows for system
which exhibit certain properties@6#:

~scale invariance!1~translational invariance!

1~rotational invariance!

1~short-range interactions!

⇒~conformal invariance!. ~1!

RLCA involves translational, rotational@8#, and, in thet
→` limit, scale @5# invariance. Experimentally the residua
electrostatic interactions between particles may includ
long-range component@9#, so we resort here to simulation
of cluster-cluster aggregation in which bonding occurs
contact, so that the interactions are indeed short-ranged.
these features of RLCA which lead us to consider the qu
tion of conformal invariance.

II. METHODS

Our simulations involved two-dimensional RLCA on
square 5123512 lattice with periodic boundary conditions
Particles were initially placed at random on lattice sites
achieve the desired number density or area fraction (f).
During the simulation clusters were selected at random
moved by one lattice spacing in a randomly chosen direct
If two particles ~monomers or incorporated in clusters! ar-
rived in neighboring lattice sites they were bonded irreve
ibly if a random number (0<x<1) was less thanp, the
particle-particle sticking probability. Otherwise they we
left in place, free to move apart at later time. After ea
cluster move time was incremented by 1/N(t), whereN(t) is

s,

y
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FIG. 1. Selected images (t51501, 4480, 10 652, and 16 566 time steps! from a 5123512 2D RLCA simulation withp50.001 andf
50.1.
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the number of clusters in the system at timet. Thus one time
step roughly corresponds to all clusters in the system ha
moved. Simulations were run until all particles had agg
gated to form a single cluster.

In our simulations we used various sticking probabiliti
and area fractions. The data to be presented all involvp
50.001 andf50.1, the latter being comparable with expe
mental values. The evolution of a typical simulation, whi
ran for a total of 56 174 time steps, is illustrated in Fig. 1

III. RESULTS AND DISCUSSION

S(q,t) was computed at various stages in the aggrega
process as

S~q,t !}U E r~r,t !eiq•rdrU2

, ~2!

wherer(q,t) is the local density. Circularly averaged da
@S(q,t) shows no azimuthal structure, demonstrating the
tational invariance mentioned above# are shown in Fig. 5~a!
below. At early times a peak is apparent inS(q,t) at q
'2p/2^Rg&, where^Rg& is the average radius of gyration o
g
-

n

-

the clusters (Rg of a cluster is defined as the trace of i
diagonalized inertia tensor!. This peak arises from conserva
tion of mass as the growing clusters deplete the local c
centration of monomers and small clusters. However, at
increases this peak becomes washed out until eventual
the t→` limit S(q,t) falls as a power law from the lowestq.
In fact, as noted experimentally@5#, the S(q,t→`) limit
diverges asq2D as q→0, whereD (51.5660.02) is con-
sistent with the fractal dimension of RLCA@10#. However,
this scaling isnot associated with the individual clusters, b
rather with the entire system: the aggregation leads to s
organization into a state in which the spatial disposition
the clusters is such that the system as a whole lacks
characteristic scale of length.

We have investigated the effects of a conformal transf
mation upon the simulated system. Such a transform is m
clearly described by considering the 2D lattice in the co
plex plane:z5x1 iy. Any analytic functionz85 f (z) then
defines a conformal transform@6#. The effects of various
transforms were studied, with essentially identical resu
Here we present data for

z85z1
z2

10
. ~3!
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Figure 2 illustrates how this transformlocally corresponds to
a combined translation, rotation, and dilatation, also the lo
preservation of angles due to the absence of any shear c
ponents inf (z).

Figures 3 and 4 show the result of applying the transf
mation of Eq.~3! to RLCA systems at two different times
While the resultant image in Fig. 3~b! is, apart from the
distorted boundary, qualitatively similar to the original, it
not obvious that the conformally transformed system is

FIG. 2. The effect of the conformal transform of Eq.~3! upon a
20320 square lattice.

FIG. 3. A typical RLCA image att57686 time steps~a! and as
conformally transformed by Eq.~3! ~b!.
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deed statistically unchanged~in fact it is not unchanged—se
below!. However, this image is for an intermediate time, n
really at thet→` limit, so this may not be entirely surpris
ing. The effects upon the system at much later time~Fig. 4!
are more convincing. However, such visual inspection c
only give a qualitative impression of similarity; we shou
rather compare the statistical information implicit in corre
tion functions or~as here! scattering functions.

We thus compare the structure functionsS(q,t) for the
original and transformed systems~Fig. 5!. To permit compu-
tation of Fourier transforms of the latter a square section
the transformed image~as large as possible! was interpolated
onto a square 5123512 lattice. For early timesS(q,t) for the
transformed system differs somewhat from that for the or
nal, but as we approach thet→` limit ~e.g.,t516566 in the
figure! these differences diminish, until finally the two func
tions are qualitatively very similar indeed. This similarity o
S(q,t) is particularly marked at lowq, where essentially the
same power-law divergence is found, while at largeq the
transform changesS(q,t) due to the distortion of the under
lying lattice. These features reflect the asymptotic nature
conformal invariance.

Thus for RLCA theq→0 divergence ofS(q,t) ast→` is
unaffected by conformal transformation of the system. Su
conformal invariance is not to be expected in DLCA, whi
self-organizes into a state with a characteristic length sc

FIG. 4. As Fig. 3, but fort516 566 time steps.
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so that scale invariance fails@3#, and for which~at least in
2D! rotational invariance is broken, as shown by the dev
opment of a hexagonal symmetry inS(q)@8#. For DLCA the
peak in S(q,t) at qm@3# which reflects the characteristi
length scale is destroyed by conformal transformation of
system, as that length scale is altered in a spatially nonun
fashion.

At this point we digress from the main thread to emph
size that this conclusion is independent of the exact tra
form used. Transforms which just involve global trans
tions, rotations, or dilatations~or any combinations of these!
were not investigated, as they are trivial. Transforms wh
are not one-to-one for allz were used in such a way as
ensure a one-to-one mapping for thex, y domain of the lat-
tice used in the simulations@e.g., forz85sin(z), z was rede-
fined to lie <p/2]. The transforms studied includedz85z
1z2/n, 10<n<50, z85z2, z85exp(pz/512), and z8
5sin(pz/1024). It would be tedious to display all of the dat
In all cases the results were qualitatively similar to tho
shown here, quantitative agreement being found for the s
of S(q,t→`) in the asymptotic limit of lowq. The present
results suggest universality in terms of the transforms us

The consistency of RLCA ast→` with the conjecture of
conformal invariance, encourages us to pursue this con
ture. A major success of the application of conformal inva

FIG. 5. Structure functions~a! for the original system and~b!
for the conformally transformed system~see text for details!.
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ance to the study of critical systems has been the quantita
prediction of exact critical exponents@6#. This has been ex-
tended to the prediction of fractal dimensions: Larsson@11#
has suggested that percolation in 2D can be treated by
formal invariance, leading to fractal dimensions given by

D5
1002n2

48
, ~4!

n being integer. The theory is nonminimal in requiring ha
integer labels in the Kac table@11#, leading to difficulties in
deducing conformal dimensionsab initio, but can be de-
duced from twistedN52 supersymmetry@12#, apparently
overcoming these difficulties. Here we accept Eq.~4! as it
stands. Clearly in 2D we require 0,D,2, restricting 2<n
<9. Could this be applicable to RLCA? As noted above, a
fractal growth process must ultimately lead to a percolat
cluster provided the system holds enough monomers. H
ever, the percolation which occurs for DLCA in sufficient
dense systems entails fractal clusters growing into each o
@3,4#. But RLCA is quite different, in that in sufficiently
dense systems~exact f depending onL) a single system-
spanning cluster may arise in the presence of smaller clus
on all length scales so that a prediction based on a perc
tion model may be appropriate. Indeed it is just this prese
of all length scales in RLCA which underlies the attributio
of self-organized criticality in this case.

The fractal dimensions observed in our simulations and
experimental studies@13# of 2D RLCA ~which agree with
literature values! agree essentially exactly with Larsson
predictions for n55: D525/16. Figure 6 illustrates this
agreement.†The crossover apparent in the figure as the s
concentration (c) increases through 0.5M corresponds to a
change in structure from RLCA-like at lowc, where the
charge on the experimental particles is only partia
screened, to DLCA-like at highc, where the screening is
essentially complete@13#.‡ The closest alternatives forD,
1.75 ~for n54) and 1.33 (n56), do not correspond at all to
the established fractal dimensions for cluster-cluster ag

FIG. 6. Fractal dimensions found in 2D cluster-cluster aggre
tion compared to the predictions of Eq.~3! for n55 ~line!. Data are
for the present simulations~s! and for 2D experiments~3! on
aqueous CaCl2 solutions of varying concentrations@13#: note the
crossover to DLCA above 0.5M.
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gation. While conformal invariance allows the prediction
scaling exponents, it offers no guidance as to which stat
cal model they might apply to. While the exact significan
of this accord is thus not immediately apparent, it again s
gests that RLCA can be associated with conformal inv
ance. We note that the only other quantitative prediction
cluster-cluster aggregation~apparently for DLCA! D51.39,
based on the fixed scale transformation approach@14#, is in
very much poorer agreement with the accepted value of 1
for DLCA.

IV. CONCLUSIONS

We have conjectured that in RLCA a colloidal syste
self-organizes to a state closely resembling a critical st
which in particular is invariant under conformal transform
tion. The asymptotic statistical invariance ofS(q,t) under
conformal transformation of the system ast→`, and the
agreement of the fractal dimension of RLCA clusters w
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predictions based on conformal invariance suggest that
conjecture may be sound. Apart from advancing our und
standing of one of the fundamental models for frac
growth, the attractiveness of this conjecture lies in the p
vision of a theoretical framework within which reaction lim
ited cluster-cluster aggregation can be explored in more
tail than heretofore. For example, conformal invarian
makes further demands on correlation functions which
testable, and provides a framework for treatment of fin
size effects@6#. Again, Eq.~3! offers several fractal dimen
sions which may be appropriate to different subsets
RLCA, defined perhaps as in the percolation case@15#.
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