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Conformal invariance in two-dimensional cluster-cluster aggregation
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It is conjectured that reaction-limited cluster-cluster aggregaffRirtCA) in two dimensiong2D) displays
conformal invariance. In support of this hypothesis, it is found that structure functions computed for on-lattice
aggregation are asymptotically invariant under conformal transformation-as Further, the fractal dimen-
sion determined for 2D RLCA is in good accord with predictions based on conformal invariance.
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I. INTRODUCTION evolves towards the limit. In particular we will consider
these trends for the scattering functis(g,t).

Cluster-cluster aggregation is a model system for growth There is some conflict in the literature over the form of
by random colloidal aggregation. Two distinct limits have S(q,t) in RLCA[2,7]. In 2D experiment$5], as in the simu-
been recognizefll]: diffusion limited (DLCA) in which par-  lations to be described here, the form tends to a power-law
ticles bond irreversibly on contact with unit probability and extending to the smallest values accessible: the system in
reaction limited(RLCA) in which the probability of particle- the final stages of aggregation lacks any characteristic scale
particle bonding is significantly less than unity. In the formerof length. Now, conformal invariance follows for systems
case the clusters self-organize into an ordered state due Yéhich exhibit certain propertigs]:
local depletion of material from their neighborhoods, leading
to an effective long-ranged repulsi¢®,3]. The final gelling _ ) _ _ _
state emerges as the growing clusters merge into a space- (scale invariancer(translational invariange
filling (or perhaps percolating]) network[3]. However, the

. +(rotational invarian
second case of RLCA is less well understood; we have to (rotationa ariance

date no conceptual framework which seems appropriate. The +(short-range interactions
system evolves, at least in two dimensid@®), to a state
which lacks any characteristic length scale: it has been sug- =(conformal invariance (1)

gested that it may self-organize into a critical state in the
limit t —co [5]. We advance here the conjecture that this state
possesses the symmetries of the critical state, in particula®_CA involves translational, rotationdl], and, in thet
that it exhibits conformal invariance. This property of critical — o limit, scale[5] invariance. Experimentally the residual
systems implies that at criticality the spatial correlation func-electrostatic interactions between particles may include a
tions describing the system are asymptotically invariant untong-range componeri®], so we resort here to simulations
der conformal transformatiof6]. We restrict ourselves to of cluster-cluster aggregation in which bonding occurs on
the 2D case, where the conformal group is an infinite-contact, so that the interactions are indeed short-ranged. It is
parameter group, giving the symmetry considerably greateshese features of RLCA which lead us to consider the ques-
scope[6]. tion of conformal invariance.
In the present context the- o limit cannot be interpreted
too strictly: any fractal growth must eventually incorporate
all the matter present within a single cluster. For an infinite Il. METHODS
system this will span the system, due to the decreasing den-
sity of growing fractal objects. This will also be true of finite ~ Our simulations involved two-dimensional RLCA on a
systems with a sufficienfsystem size dependenparticle  square 51X 512 lattice with periodic boundary conditions.
density to form a spanning cluster. In such a state the systemarticles were initially placed at random on lattice sites to
cannot show structures on all length scales as envisaged athieve the desired number density or area fractigi. (
the analogy with criticality. We thus consider the trends as During the simulation clusters were selected at random and
moved by one lattice spacing in a randomly chosen direction.
If two particles (monomers or incorporated in clustemr-
*Electronic address: j.earnshaw@qub.ac.uk rived in neighboring lattice sites they were bonded irrevers-
TPresent address: Liberty Mutual, 222 Rosewood Drive, Danversbly if a random number (&x<1) was less tharp, the
MA 01923. particle-particle sticking probability. Otherwise they were
*Established at the Queen’s University of Belfast and Universityleft in place, free to move apart at later time. After each
College, Dublin. cluster move time was incremented by{{), whereN(t) is
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FIG. 1. Selected imaged=1501, 4480, 10 652, and 16 566 time sfefpem a 512<512 2D RLCA simulation withp=0.001 and¢
=0.1.

the number of clusters in the system at tim&hus one time  the clusters Ry of a cluster is defined as the trace of its
step roughly corresponds to all clusters in the system havindiagonalized inertia tensprThis peak arises from conserva-
moved. Simulations were run until all particles had aggretion of mass as the growing clusters deplete the local con-
gated to form a single cluster. centration of monomers and small clusters. Howevert as
In our simulations we used various sticking probabilitiesincreases this peak becomes washed out until eventually in
and area fractions. The data to be presented all invplve thet— o limit S(q,t) falls as a power law from the lowegt
=0.001 andp=0.1, the latter being comparable with experi- In fact, as noted experimentallyp], the S(q,t—) limit
mental values. The evolution of a typical simulation, whichdiverges agj °® asq—0, whereD (=1.56+0.02) is con-
ran for a total of 56 174 time steps, is illustrated in Fig. 1. sistent with the fractal dimension of RLCL0]. However,
this scaling isnot associated with the individual clusters, but
rather with the entire system: the aggregation leads to self-
IIl. RESULTS AND DISCUSSION organization into a state in which the spatial disposition of
the clusters is such that the system as a whole lacks any
S(q,t) was computed at various stages in the aggregatiogharacteristic scale of length.
process as We have investigated the effects of a conformal transfor-
mation upon the simulated system. Such a transform is most
clearly described by considering the 2D lattice in the com-
2) plex plane:z=x-+iy. Any analytic functionz’ =f(z) then
defines a conformal transforii6]. The effects of various
transforms were studied, with essentially identical results.

. . ) Here we present data for
where p(q,t) is the local density. Circularly averaged data

[S(qg,t) shows no azimuthal structure, demonstrating the ro-
tational invariance mentioned abdware shown in Fig. &)
below. At early times a peak is apparent 8iq,t) at q S —gy o 3)
~2mI2Ry), where(Ry) is the average radius of gyration of 10°

2

S(a,t)

f p(r,t)e'd"dr
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(a) (b)

FIG. 2. The effect of the conformal transform of E§) upon a
20X 20 square lattice.

Figure 2 illustrates how this transforimcally corresponds to

a combined translation, rotation, and dilatation, also the local
preservation of angles due to the absence of any shear com-
ponents inf(z).

Figures 3 and 4 show the result of applying the transfor-
mation of Eq.(3) to RLCA systems at two different times.
While the resultant image in Fig.(l9 is, apart from the
distorted boundary, qualitatively similar to the original, it is
not obvious that the conformally transformed system is in-
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FIG. 3. A typical RLCA image at= 7686 time step$a) and as
conformally transformed by Edq3) (b).

FIG. 4. As Fig. 3, but fot=16 566 time steps.

deed statistically unchangéih fact it is not unchanged—see
below). However, this image is for an intermediate time, not
really at thet—oo limit, so this may not be entirely surpris-
ing. The effects upon the system at much later tiffig. 4)

are more convincing. However, such visual inspection can
only give a qualitative impression of similarity; we should
rather compare the statistical information implicit in correla-
tion functions or(as herg scattering functions.

We thus compare the structure functio&,t) for the
original and transformed syster{fSig. 5. To permit compu-
tation of Fourier transforms of the latter a square section of
the transformed imag@s large as possiblevas interpolated
onto a square 5122512 lattice. For early timeS(q,t) for the
transformed system differs somewhat from that for the origi-
nal, but as we approach the»oo limit (e.g.,t=16566 in the
figure) these differences diminish, until finally the two func-
tions are qualitatively very similar indeed. This similarity of
S(q,t) is particularly marked at lowg, where essentially the
same power-law divergence is found, while at lagy¢he
transform change$(q,t) due to the distortion of the under-
lying lattice. These features reflect the asymptotic nature of
conformal invariance.

Thus for RLCA theg— 0 divergence 0§(q,t) ast—x is
unaffected by conformal transformation of the system. Such
conformal invariance is not to be expected in DLCA, which
self-organizes into a state with a characteristic length scale,
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FIG. 6. Fractal dimensions found in 2D cluster-cluster aggrega-
102 y . T tion compared to the predictions of E§) for n=5 (line). Data are

for the present simulation€D) and for 2D experiment$X) on
aqueous CaGlsolutions of varying concentratiorfd3]: note the
crossover to DLCA above O\b.

S(q,?) (arb. units)

0% ance to the study of critical systems has been the quantitative

prediction of exact critical exponent6]. This has been ex-
tended to the prediction of fractal dimensions: Larsgbhj
has suggested that percolation in 2D can be treated by con-

100 formal invariance, leading to fractal dimensions given by

100-n?
D:—

48 @

100 E
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n being integer. The theory is nonminimal in requiring half-
integer labels in the Kac tab[d.1], leading to difficulties in
deducing conformal dimensiorab initio, but can be de-
duced from twistedN=2 supersymmetnf12], apparently
overcoming these difficulties. Here we accept E4. as it
so that scale invariance fai[8], and for which(at least in  stands. Clearly in 2D we require<iD <2, restricting 2<n
2D) rotational invariance is broken, as shown by the devel=<9. Could this be applicable to RLCA? As noted above, any
opment of a hexagonal symmetry $q)[8]. For DLCA the  fractal growth process must ultimately lead to a percolating
peak in S(qg,t) at q,[3] which reflects the characteristic cluster provided the system holds enough monomers. How-
length scale is destroyed by conformal transformation of theever, the percolation which occurs for DLCA in sufficiently
system, as that length scale is altered in a spatially nonuniquéense systems entails fractal clusters growing into each other
fashion. [3,4]. But RLCA is quite different, in that in sufficiently

At this point we digress from the main thread to empha-dense systemé&xact ¢ depending orlL) a single system-
size that this conclusion is independent of the exact transspanning cluster may arise in the presence of smaller clusters
form used. Transforms which just involve global transla-on all length scales so that a prediction based on a percola-
tions, rotations, or dilatation@r any combinations of these tion model may be appropriate. Indeed it is just this presence
were not investigated, as they are trivial. Transforms whictof all length scales in RLCA which underlies the attribution
are not one-to-one for alt were used in such a way as to of self-organized criticality in this case.
ensure a one-to-one mapping for they domain of the lat- The fractal dimensions observed in our simulations and in
tice used in the simulatior{®.g., forz’' =sin(z), zwas rede- experimental studiefl3] of 2D RLCA (which agree with
fined to lie <#/2]. The transforms studied includeri=z literature valuek agree essentially exactly with Larsson’s
+7%/n, 10=n<50, z'=7% Zz'=exp@z512), and z’'  predictions forn=5: D=25/16. Figure 6 illustrates this
=sin(7z/1024). It would be tedious to display all of the data. agreement[The crossover apparent in the figure as the salt
In all cases the results were qualitatively similar to thoseconcentration ¢) increases through M corresponds to a
shown here, quantitative agreement being found for the slopghange in structure from RLCA-like at low, where the
of S(g,t—) in the asymptotic limit of lowg. The present charge on the experimental particles is only partially
results suggest universality in terms of the transforms usedscreened, to DLCA-like at higle, where the screening is

The consistency of RLCA as—c with the conjecture of essentially complet¢13].] The closest alternatives fdp,
conformal invariance, encourages us to pursue this conje&.75(for n=4) and 1.33 {=6), do not correspond at all to
ture. A major success of the application of conformal invari-the established fractal dimensions for cluster-cluster aggre-

¢ (units of pixel™)

FIG. 5. Structure functionga) for the original system an¢b)
for the conformally transformed systefsee text for detai)s
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gation. While conformal invariance allows the prediction of predictions based on conformal invariance suggest that this
scaling exponents, it offers no guidance as to which statistieonjecture may be sound. Apart from advancing our under-
cal model they might apply to. While the exact significancestanding of one of the fundamental models for fractal
of this accord is thus not immediately apparent, it again suggrowth, the attractiveness of this conjecture lies in the pro-
gests that RLCA can be associated with conformal invarivision of a theoretical framework within which reaction lim-
ance. We note that the only other quantitative prediction foiited cluster-cluster aggregation can be explored in more de-
cluster-cluster aggregatidiapparently for DLCA D=1.39, tail than heretofore. For example, conformal invariance
based on the fixed scale transformation apprdddh, is in  makes further demands on correlation functions which are
very much poorer agreement with the accepted value of 1.4¢stable, and provides a framework for treatment of finite
for DLCA. size effectd6]. Again, Eq.(3) offers several fractal dimen-
sions which may be appropriate to different subsets of
RLCA, defined perhaps as in the percolation dd<s.

IV. CONCLUSIONS
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